

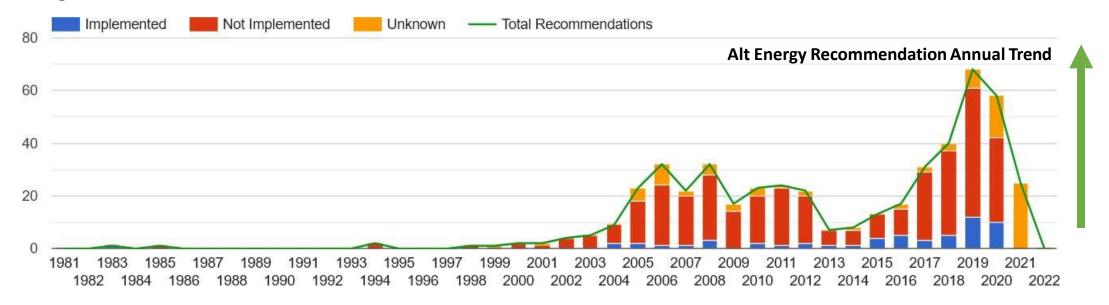
Alternative Energy Usage

Types of Recommendations

back	2.9xxx Alternative Energy Usage	511	\$44,811,635	8.1	14.5%
	2.91xx GENERAL	511	\$44,811,635	8.1	14.5%
open	2.911 × Solar	475	\$22,773,099	8.3	14.4%
open	2.912× Wind Power	21	\$14,414,107	6.5	11.8%
open	2.913× Hydrogen	4	\$886,862	4.6	0.0%
open	2.914× Biofuels	11	\$6,737,568	5.4	33.3%

What's the idea?

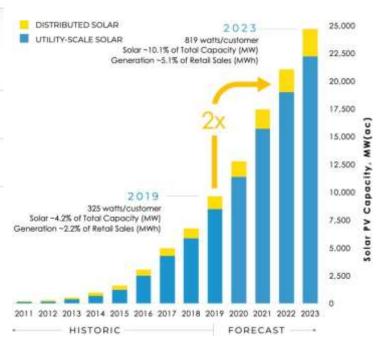
- Utilize alternative energy sources to offset energy expenses in industrial processes For example
- Use electricity generated from solar/wind to reduce grid load
- Use solar heat to pre-heat boiler inlet
- Replace battery-powered forklifts with hydrogen fuel-cell forklifts
- Use biodigester to generate biogas for heating or electric power generator



Alternative Energy Usage

Alternative Energy Rec's in the IAC

The average implementation rate is 46%, yet the average Alt Energy implementation is **14.5%**. The good news is...


Objective: Increase recommendation & implementation rate

[2.911x] Solar Energy

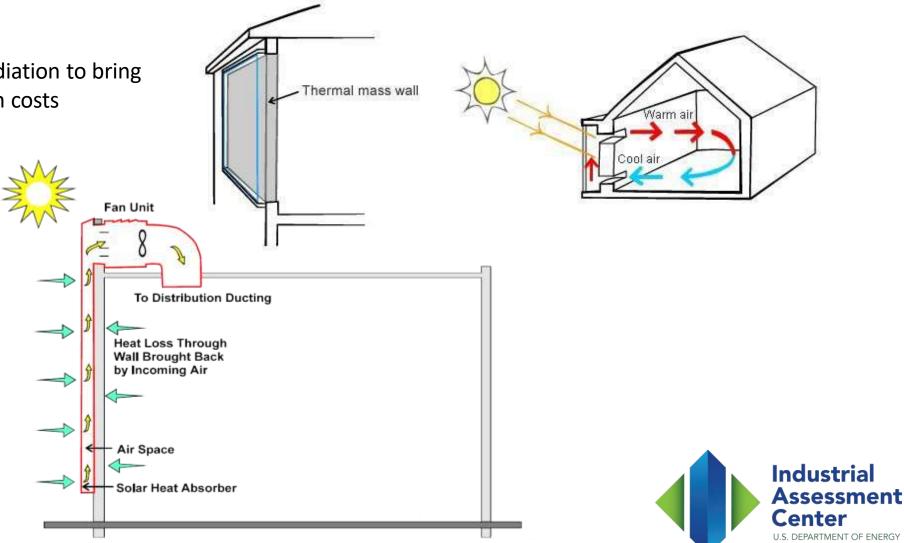
2.9111 USE SOLAR HEAT TO HEAT MAKE- UP AIR	24	\$166,524	7.3	0.0%
2.9112 USE SOLAR HEAT TO HEAT WATER	76	\$875,777	6.0	16.9%
2.9113 USE SOLAR HEAT FOR HEAT	35	\$1,467,117	6.0	13.8%
2.9114 USE SOLAR HEAT TO MAKE ELECTRICTY	339	\$20,151,476	9.1	15.1%

Things to note:

- Most common type of alternative energy recommendation
- Utility, state, and federal incentive programs
- Survey environment for suitability
 - DOE sanctioned software to simulate generation capacity: SAM (System Advisor Model)
- Size installation to maximize utility savings
 - Use the utility tariff and interval data to inform project scale

[2.9111] Solar Air Heating

Concept


 Preheat air intake using solar radiation to bring down air heating and ventilation costs

Types of devices

- Solar walls
- Trombe walls
- Solar chimneys

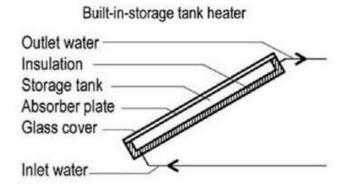
Use cases

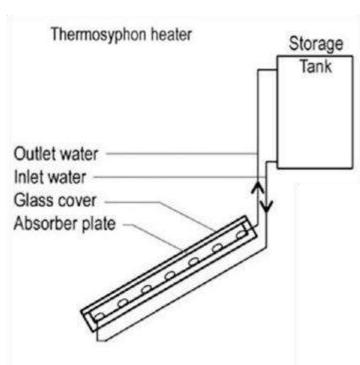
- Kilns
- Dryers
- Metal annealing
- Space conditioning

[2.9112] Solar Water Heating

Concept

 Preheat water heater intake using solar radiation to reduce electric/gas heating expenses


Types of devices

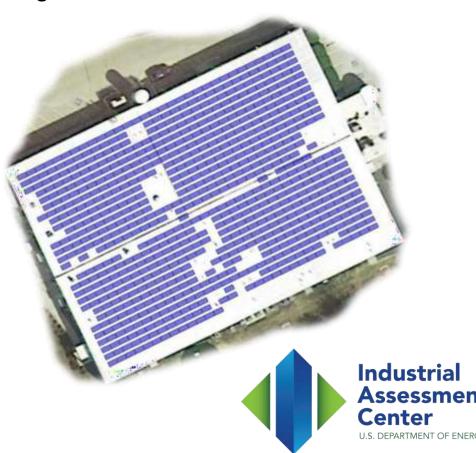

Passive – stored in elevated tanks

- Integral collector-storage (less expensive)
 - Warms water for the conventional tank, the stored batch is drawn from when hot water is demanded
- Thermosiphon (more expensive)
 - Hot water rises to the top of the collector and moves into a storage tank which feeds to a tank within the facility

Active – self contained electric/gas backup

- Direct: moves the water itself through collector
- Indirect: moves antifreeze through collector which heats tank water via a heat exchanger

[2.9114] Solar Electricity



What makes solar PV attractive to manufacturers?

- Facilities often have the surface area needed for a Solar PV project
- Costs have decreased to the point where Solar PV can be competitive with the grid
- Requires minimal maintenance and lasts 25 to 30 years
- Environmentally responsible & tax incentivized

Notes for making a Solar PV recommendation

- Available space for project
 - Size project to produce only enough to meet the facility's needs
 - o General rule of thumb: 1 kW of solar capacity per 100ft²
- Solar project modelling and simulation
 - NREL's SAM (System Advisor Model) & PV-Watts calculator
- What incentive programs are available?
 - o Database of State Incentives for Renewables & Efficiency
- The IAC encourages the company to seek out proposals from various solar installers to get a competitive price

[2.912x] Wind Power

2.912x Wind Power	21	\$14,414,107	6.5	11.8%
2.9121 INSTALL WIND POWERED ELECTRIC GENERATOR	20	\$13,310,333	6.6	12.5%

When is it viable?

- Open areas at higher elevations
 - Weather stations record windspeed data
 - O Benchmark: Average annual wind speeds of 6.5m/s or greater at 80m
- Constant operation loads
- Look at utility's electricity billing structure & facility's consumption profile
 - o Is there significant savings to be made?
- Does the state have incentive programs for the use of wind turbines?

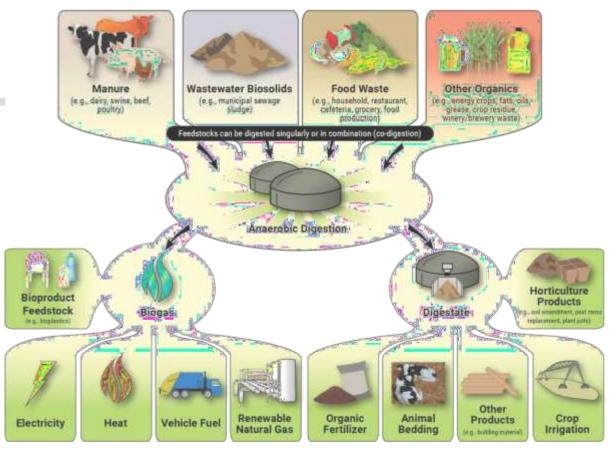
[2.913x] Hydrogen

2.913× Hydrogen	4	\$886,862	4.6	0.0%
2.9131 INSTALL HYDROGEN FUEL CELL	4	\$886,862	4.6	0.0%

When is it viable?

- Potential replacement for smaller battery or ICE operated transportation devices
 - Golfcarts
 - Corporate campus shuttles
 - Forklifts
- Emergency backup power (few moving parts and high durability)
- Government discounts exist for companies willing to pilot this technology
 - Hydrogen Laws and Incentives

[2.914x] Biofuels


2.914× Biofuels	11	\$6,737,568	5.4	33.3%
2.9141 Install Anaerobic Digester	11	\$6,737,568	5.4	33.3%

What's the idea?

- Win-win, helps manage waste while producing usable fuel
- Anaerobic digestion is an established technology for the treatment of waste and wastewater, the final products are stable sludge and biogas (i.e., Methane) which can be; sold, used for heating, co-generation of electricity and heat, infused into fertilizer, etc

When is it viable?

- Industrial biproduct is a bio-digestible substance
 - Part of industrial process requires heating (i.e., boiler or furnace) or high electric demand

Alternative Energy Usage

Questions?