

Motors and VFDs MSU-IAC 1/31/22

UNIVERSITY...

INDUSTRIAL ASSESSMENT CENTER

Outline

RUTGERS/

- Motor losses and efficiencies
- Maintenance and Trending
- Rewind versus Replacement
- Drives VSDs and others
- Special Applications
- Fans and pumps

'AES

Why Talk About Motors?

- It is estimated that motors use 65 percent of the electricity consumed by industry
 - Generating 37 million tons of CO2 annually
 - About \$90 billion per year
- The cost of electricity for operating a motor is many times greater than the cost of the motor
- Losses in the "motor system" can dwarf motor losses
 - Slippage in belts

GERS/

Poor system design

• Premium 10 hp motor costs \$239 more than EPACt

- Twenty percent premium in price!!!
- Example:

GERS/

- 10 hp motor @ 89% efficiency uses 11.24 hp (8.38 kW)
- Run at 80% load for 8000 hrs per year costs = 53,632 kWh
 - (At \$0.10 per kWh this costs \$5363 per year)
- A 1% improvement in efficiency would save \$54 per year
 - (4 ¹/₂ years to get your money back)

Motor Losses

• Primary and Secondary Resistance Losses

- I²R (more load, more loss)
- Rotor = primary;
 Stator = secondary
- Magnetic Losses
 - Eddy currents and hysteresis in steel laminations

- Stray Losses (10% 15%)
 - Flux leakage; non uniform currents; air gap irregularities

Industrial

- Mechanical Losses
 - Friction in the motor bearings
 - Windage loss

Losses are well known

Solutions are available Mostly MORE COPPER!

- Tradeoff in costs
 - Feds require improvement through rule making

Factbox 1 Distribution of losses in an ABB M3BP motor

no-load losses	iron losses in core	18%
	windage & friction losses	10%
load losses	stator copper losses	34%
	rotor losses	24%
	stray load losses	14%

So, if motors are so efficient, what to do?

- Spend extra for more efficiency
- Maintenance
- Correct Sizing
- Efficient System Design

- Very often ignored by many plants.
- A good maintenance program can extend lifetime, reduce downtime, failures, reduce repair costs.
- Cleaning Dirt is an insulator, motors run hotter
 - Degrade lubricants, damages bearings and insulation.
 - Sound insulation is usually unnecessary and can raise operating temperatures significantly
- Lubrication Most factory sealed bearings do not require lubrication.

Vibration meter use

RUTGERS/CAES

Vibration sensors can mount magnetically – note flat or round mounting!

- Always make temperature and vibration measurements from the same spot on the motor.
- Always make measurements after the motor is warmed up and under the same motor loading conditions.

When motors fail

- Unplanned down time often biggest cost
 - Results in urgency to have motor back up and running
- Decision needs to be made on whether to replace or rewind the motor
 - Policy needed
 - Cannot be done after motor has failed
- Inventory control helps
 - Easier to have backup motors

Rewinding

- Can be done well if time is taken
 - Careful, hand rewound motors can have better efficiencies than the original motor
 - Oven temps for curing and stripping are key
- Studies have shown increased <u>core loss</u> caused by excessive lamination heating during oven stripping of a failed winding.
 - Rule of thumb: "Stay below 750 °F"
 - Many "burn-off" ovens operate at 1400 °F!
- Same issues pertain to curing/drying

Rewinding (cont.)

- Our conclusion most times rewinding is done too quickly – impacts efficiency (1 – 2%)
- Our recommendation never rewind twice!!!
 - Replacement motor must be available to reduce down time

Partial Loading

- Most motors are intentionally oversized.
- At 75% to 80% of full load power, motor efficiency and power factor are high.
- Motor efficiency and power factor decrease rapidly at less than 25% loading.

Remember, AC motors slip

Unloaded RPM should be:

- 3600 for 2 pole
- 1800 for 4 pole
- 1200 for 6 pole
- 900 for 8 pole
- Nameplate gives full load RPM
- Tachometers give some sense of motor load
- Premium efficiency motors will have less slip

RUTGERS/*C*AES

 Some applications makes this a problem!!

GENE	RALGEELE	CTRIC
	A-C MOTOR	
MOD SKC39N	G 202 RPM 34	·50 H四/4
y 110	A	PH 1 ()
CY 60 TEMP	TIME	
CODE J SF	FR	VMD
NP.140660	FORT WAYNE, INDIANA	MADE IN U.S.A.

Motor Labels – confusing info

- Not well standardized
- Common abbreviations:
 - FLA Full load amps
 - RLA Running load amps
 - LRA Locked Rotor Amps
 - Is the in-rush current at startup
 - SFA Service factor amps
 - SF Service factor
 - Amount rated loads can be exceeded either as a percent or in amps
 - PF Power factor

GERS/

Partial Loading

• Solutions include:

- Downsizing
- Multiple motors serving same system
- Two speed motors
- Motors controlled with variable speed drives.

Electronic Variable Speed Drives

Also called

- VFD's (variable frequency drives)
- ASD's (adjustable speed drives)
- Inverters
- Rectifies incoming AC to DC
- Inverts the DC to AC using square waves

Electronic Variable Speed Drives

- VSD's should only be coupled to motors that are suitable for VSD's
- Must use "inverter duty" versus "general purpose" motors
 - A VFD-driven general purpose motor can overheat if it is run too slowly.
 - The voltage "chopping" that occurs in the drive actually sends high-voltage spikes (at the DC bus level) down the wire to the motor
 - This can lead to premature failure of the motor insulation
- The terms "inverter duty", "inverter ready", and "inverter rated" are undefined and, as such, are fair game for any marketer to use
 - Need to talk with motor manufacturer

VFD applications

- VSD's are used in constant and variable torque applications
- Slowing the motor speed reduces the torque on the motor, can result in significant energy savings
- Most common applications include pump and fan systems, conveyor belts and rollers
- Improves process control and reduces maintenance costs

VFD Impacts on Pumps and Fans

• Two main types

- Reduce fan or pump energy
 - Flow rates commonly controlled by dampers
 - Like driving your car using only the brake with the accelerator fully engaged

- Theoretically, the energy required to move any fluid CUBES every time the flow rate is doubled.
 - If a fan is run at double it's normal speed, it uses 8 times the energy. 1/2 speed = 1/8 the normal energy draw.
 - VFD's allow this saving to be achieved (partially)
- Lower load on secondary equipment
 - Example Draft fan on a furnace
 - Normal mode is to operate the fan at constant speed
 - » Draws air through the furnace whether it is needed or not
 - VFDs allow feedback to limit air flow through the furnace with enormous savings

Cogged V-belts

- Cogged belts have slots that run perpendicular to the belt's length.
- The slots reduce the <u>bending</u> resistance of the belt.
- Cogged belts can be used with the same pulleys as equivalently rated V-belts.

Cogged V-belts

- Cogged V-belts last at least 50% longer than standard V-belts
- Cogged V-belts are slightly noisier than standard Vbelts.
- Compensates for the 20% to 50% higher cost
- Recommend cogged V-belts in all V-belt applications
 except
 - Clutching uses
 - Dirty environments

Industrial

Conclusions: Common Motor System Recs

Reducing Run-Time

- Turn off motors whenever possible.
- Use programmable time clocks or controllers whenever possible.

Reducing Peak Electrical Demand

Run equipment during off-peak periods to reduce peak electrical demand.

• Improving Efficiency of Motor Drive trains

- Use direct drive or synchronized drives whenever possible
- In belt drives, use cogged v-belts instead of standard v-belts.

Match Motor with use

GERS/

- Replace Oversize Motors
- Use special duty motors
- Establish a Replace/Rewind Motor Policy
- Use VFD's whenever the application allows

- What is a VFD?
 - Variable Frequency Drives (VFDs) control the speed of the AC induction motors by changing the frequency
- Data was taken from a
 - Damper measurements were taken as the damper was opened and closed
 - VFD measurements were taken as the frequency was turned up and down

Power vs. Flow Rate

Recommendation

Instead of using dampers or loaded/unloaded operations, motors should include

VFDs to reduce energy usage

- Assumptions and knowns
 - 1/25 HP motor
 - (Power*LF/Efficiency) is found from data
 - Operating hours (OH) = 8760 hrs
 - Electricity unit cost (EUC) = \$0.08/kWh
 - Demand unit cost (DUC) = \$10/kW
 - Required Load Factor (LF) = 75%
 - Utility Factor (UF) = 100%
 - C = # of months in a year, 12

USDOE IAC Training

Recommendation

- Data for example calculation
 - Damper power at 75% open = 54.305 W
 - VFD power at 75% load = 46.595 W
- Equations
 - Energy Usage (EU) = (Power*LF/Efficiency)*UF*OH
 - Demand Usage (DU) = (Power*LF/Efficiency)*UF*C
 - Energy Cost (EC) = (Power*LF/Efficiency)*UF*OH*EUC
 - Demand Cost (DC) = (Power*LF/Efficiency)*UF*C*DUC

